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mail to: clair.poignard@inria.fr

Abstract—The first terms of a multiscale expansion are intro-
duced to tackle a magneto-harmonic problem in a bidimensional
setting where the conducting medium is non-magnetic and has
a corner singularity. The heuristics of the method are given and
numerical computations illustrate the obtained accuracy.

I. INTRODUCTION

Electrothermics applications require a precise knowledge of
the Joule power density. Skin effect combined with corner
singularities is an obstacle to reach this precision. Here, we
introduce a method to tackle a magneto-harmonic problem in
2D where the conducting medium is non-magnetic and has a
corner singularity. More precisely, denote by Ω− the bounded
domain corresponding to the conducting medium, and by Ω+

the surrounding dielectric medium (see Fig. 1(a)). The domain
Ω with boundary Γ is defined by Ω = Ω−∪Ω+∪Σ, where Σ
is the boundary of Ω−. For simplicity’s sake, we assume that:
(H1) Σ has only one geometric singularity, and we denote

by C this corner. The angle of the corner (from the
conducting material, see Fig. 1(a)) is denoted by ω.

(H2) the current source term J is located in Ω+ and it
vanishes in a neighborhood of C.
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(a) Model domain for the heuristics.
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(b) L-shape dielectric domain and
boundary conditions for the example.

Fig. 1. Geometry of the problems considered.

Throughout the paper ρ denotes the corner distance and θ
is the angular variable (see Fig. 1). Moreover the notations
[u]Σ = u+|Σ−u−|Σ and ∂n = n · ∇ are used, n being the
normal to Σ inwardly directed from Ω+ to Ω−. The skin depth
δ =

√
1/(πfσµ0) is supposed to be small compared to the

characteristic length of the domain. In the expression of δ, f
is the frequency of the source term, σ is the conductivity, and

µ0 is the vacuum magnetic permeability. The magnetic vector
potential Aδ (reduced to one scalar component in 2D) satisfies

−∆A+
δ = µ0J in Ω+,

−∆A−δ +
2i

δ2
A−δ = 0 in Ω−,

[Aδ]Σ = 0 on Σ,
[∂nAδ]Σ = 0 on Σ,

A+
δ = 0 on Γ.

(1)

Denote by A0 the potential in the perfectly conducting case:
−∆A+

0 = µ0J in Ω+,
A+

0 = 0 on Σ,
A+

0 = 0 on Γ,
A−0 = 0 in Ω−. (2)

It is intuitive that A+
0 approximates Aδ in the dielectric

medium. Moreover, it can be proved for a regular interface
Σ that the “power norm” [1] of the error Aδ −A0 is of order
δ [2]. This accuracy is no more valid for a corner singularity.
Our aim is to propose a rigorous method to recover the order δ
by adding an appropriate correction in the neighborhood of the
corner. Note that Yuferev et al. in [3] have considered a similar
problem using a formal approach of transmitted singularities.
Their work aimed at “correcting” the method proposed by
Deeley [4]. However we are confident that the heuristics of
[3] lead to non-relevant results. This is detailed in Section III.

Here, we present the heuristics of the treatment of the
singularity, that lead to the accurate approximation of Aδ as
δ goes to zero, and we conclude by numerical experiments.

II. HEURISTICS OF THE EXPANSION

Let first note the two following remarks:
• similarly to the regular case, A0 defined by (2) is the

solution of the limit problem of (1) as δ goes to zero.
Hence the first term of the expansion should start by A0.

• since the respective behaviors of Aδ and A0 are different
in the corner for any non-zero δ, it seems natural to
truncate A0 in the corner by a function ϕ which is zero
close to the corner and 1 far from this corner. Suppose
that we introduce such a smooth radial cut-off function:

ϕ(ρ) =

{
1, if ρ > d1

0, if ρ 6 d0

, with d0 < d1, (3)

d0, d1 being fixed corner distances. If ϕA0 is taken as the
first term for approximatingAδ , it will not converge toA0
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as δ goes to zero. If ϕ(·/δ)A0 is considered instead, the
correct limit is obtained (ϕ(./δ) function: t 7→ ϕ(t/δ)).

According to these remarks, consider the problem satisfied by
rδ0 = Aδ − ϕ(./δ)A0:

−∆rδ0 = [∆;ϕ (./δ)]A+
0 , in Ω+, rδ0|Γ = 0, on Γ, (4a)

−∆rδ0 +
2i

δ2
rδ0 = 0, in Ω−, (4b)[

rδ0
]
Σ

= 0,
[
∂nr

δ
0

]
Σ

= −∂n
(
ϕ(./δ)A+

0

)
, on Σ, (4c)

where for any couple (ν, u), [∆; ν]u = ∆(νu) − ν∆u. Note
that assumption (H2) is necessary to obtain (4a).

If we were not to use the cut-off function ϕ in the corner,
therefore the jump

[
∂nr

δ
0

]
Σ

would be equal to −∂nA+
0 |Σ,

which blows up in the corner. Since [∂nAδ]Σ identically
vanishes in the corner on Σ we would have to compensate
this blowing term, which would lead to numerical difficulties.
The use of ϕ(./δ) in (4c) ensures that

[
∂nr

δ
0

]
Σ

vanishes in
the corner. Solving exactly (4) provides no benefits, but since

A+
0 '
ρ→0

a1ρ
α sin(αθ) = a1s

α where α = π/(2π − ω), (5)

we guess a correction in the corner region such that the
expansion becomes

Aδ = ϕ
( ·
δ

)
A0 + (1− ϕ)a1δ

αVα

( ·
δ

)
+ rδα. (6)

In (6), the “profile” term Vα is the solution of a problem in
R2 that is independent of A0 and δ while rδα lives in the
domain Ω. To determine the problem solved by Vα, from (5)
we first replace A+

0 by sα in (4). Then we use the fact that ϕ
depends only on ρ and that ∂n = ±(1/ρ)∂θ near the corner,
and we perform the rescaling X = x/δ (R = ρ/δ). Taking
the limit when δ goes to zero (Γ is thus “sent” to the infinite)
leads to the “profile” problem satisfied by Vα in R2, which is
divided into two infinite sectors S+ and S− (remember that
X = (R cos(θ), R sin(θ)) with R > 0):

−∆XVα = [∆X ;ϕ] sα, in S+ = {X : θ ∈ (ω, 2π)}, (7a)
−∆XVα + 2iVα = 0, in S− = {X : θ ∈ (0, ω)}, (7b)
Vα →|X|→+∞ 0, (7c)

with the transmission conditions on G = {X : θ = 0, ω} :

[Vα]G = 0, [∂nVα]G = αϕRα−1. (7d)

Capturing the singularity of the domain in a profile term is
quite natural and has to be linked up similarly to [5], [6]. The
theoretical proof that rδα is of order δ needs more than two
pages, and will be presented in a forthcoming paper.

III. NUMERICAL RESULTS

The domain presented in Fig. 1(b) is considered for nume-
rical purpose. The errors |rδ0| and |rδα| are plotted respectively
in Fig. 2(a) and 2(b). The terms Aδ , a1, A0 and Vα are
computed by using the finite element method as in [6] where
an electrostatic problem on a geometry with a rounded corner
is considered. On both figures, the same color scale is used
except the white area around the corner in Fig. 2(a) where the
error is higher (between 0.04 and 0.14). Fig. 2(b) shows the

(a) |rδ0|. (b) |rδα|.

Fig. 2. Modulus of the errors between the solution and the two first orders
of (6) for δ = 0.025. The distances of (3) are d0 = 1 and d1 = 1.2.

profile correction (7): the highest error lies now in the regular
part of the interface Σ, for which correction is known [2].

Suppose that a1 6= 0, which is the worst corner influ-
ence, and denote by Zs = (1 + i)/(σδ) the regular surface
impedance. According to the expansion, the surface impedance
Zδ can be approximated close to the corner by:

Zδ = Zs
1 + i

δ

Aδ
∂nAδ

'
ρ→0

Zs(1 + i)
Vα(·/δ)

(∂nVα)(·/δ)
, (8)

therefore for any σ and f such that δ is small enough, the
function Zδ(δ·)/|Zs| behaves close to zero as

√
2iVα/(∂nVα).

These similar behaviors are shown in Fig. 3 where the
“impedance” from the profile function is compared to the real
impedance for two values of δ, where f and σ are different.
According to [3], the surface impedance should blow up like
ρ−1 for any non-zero δ, which is shown to be false here.

Fig. 3. Behavior of Zδ/|Zs| vs ρ/δ. The domain characteristic length L is
here 0.1m, then δ/L is between 2 and 4.6% for the situations considered.
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